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Abstract Pharmacophore mapping studies were undertak-
en for a series of molecules belonging to pyrrolopyrimi-
dines, indolopyrimidines and their congeners as multidrug
resistance-associated protein (MRP1) modulators. A five-
point pharmacophore with two hydrogen bond acceptors
(A), one lipophilic/hydrophobic group (H), one positive
ionic feature (P) and one aromatic ring (R) as pharmaco-
phoric features was developed. The pharmacophore hy-
pothesis yielded a statistically significant 3D-QSAR model,
with a correlation coefficient of r2=0.799 for training set
molecules. The model generated showed excellent predic-
tive power, with a correlation coefficient Q2=0.679 for an
external test set of 20 molecules. The pharmacophore was
further validated using four structurally diverse compounds
with MRP1 modulatory activity. These compounds mapped
well onto four of the five features of the pharmacophore.
The pharmacophore proposed here was then utilised for the
successful retrieval of active molecules with diverse
chemotypes from database search. The geometry and
features of pharmacophore are expected to be useful for
the design of selective MRP1 inhibitors.
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Introduction

The phenomenon of development of cross resistance by
tumour cells treated with multiple chemotherapeutic agents
is known as multidrug resistance (MDR). Cancer chemo-
therapy often fails due to the development of MDR. One
form of MDR is caused by active efflux of drugs from
tumour cells mediated by large polytopic membrane
proteins. In humans, two ATP-binding cassette (ABC)
transporters have been documented to cause resistance in
tumour cells: P-glycoprotein (Pgp) (MDR1) and multidrug
resistance-associated protein 1 (MRP1) [1, 2]. These trans-
porters function by binding to drugs within the cell and
releasing them into the extracellular space using energy
from the hydrolysis of adenosine tri-phosphate (ATP).
Tumour cells that are exposed to cytotoxic compounds
often overexpress these efflux pumps, allowing such cells
to survive even in the presence of anticancer agents.
Overexpression of these proteins is well documented to
occur in a number of tumour types, indicating that this
mechanism of MDR is clinically important. Additionally,
several studies have shown that expression of these proteins
may be a prognostic indicator in certain malignancies [3].

Because of the importance of these proteins in clinical
oncology, search for antagonists of these proteins, often
called MDR modulators, has intensified. These antagonists
function by blocking transporter-mediated drug efflux so
that a concomitantly administered anticancer drug can
cause tumour cell death. Initial efforts to develop MDR
modulators were focussed mainly on verapamil and cyclo-
sporin A. These compounds demonstrated excellent in vitro
reversal of MDR but failed to achieve clinical success due
to their intrinsic toxicity and/or alteration of the pharmaco-
kinetics of the co-administered anticancer drugs.
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Many investigations report common structural features
responsible for MDR1 modulation [4–11]. While several
inhibitors of MDR1 have entered clinical trials, the
development of specific MRP1 inhibitors remains in its
infancy, although Eli Lilly has reported raloxifene ana-
logues and isooxazoloquinoline analogues as selective
MRP1 inhibitors [1]. Furthermore, little structure-activity
relationship (SAR) data is available for selective MRP1
inhibitors. Touhey et al. [12] investigated the SAR of
indomethacin mediated MRP-1 inhibition. Recently Ram-
aen et al. [13] reported the crystal structure of human
MRP1 nucleotide binding domain 1. However, due to the
lack of a complete crystal structure of MRP1, ligand-based
drug design remains the major tool for rational drug design
in this area. Cheng et al. performed pharmacophore
mapping studies for several drug transporter proteins,
including MRP1 [14]. Wang et al. [1, 2] reported studies
on pyrrolopyrimidines, and templates derived from them, as
novel and selective MRP1 inhibitors. Lather et al. [15] have
described a topological model for the prediction of MRP1
inhibitory activity.

Ligand-based drug design approaches like pharmaco-
phore mapping [16] and quantitative structure-activity
relationship (QSAR) [17, 18] can be used in drug discovery
in several ways, e.g. rationalisation of activity trends in
molecules under study, prediction of the activity of novel
compounds, and database search studies in search of new
hits and to identify important features for activity. This
paper describes the development of a robust ligand-based

3D-pharmacophore hypothesis using Pharmacophore
Alignment and Scoring Engine (PHASE) for MRP1 [19].
The alignment obtained from the pharmacophoric points is
used to derive an atom-based 3D-QSAR model. The
pharmacophore thus developed imparts information about
important features for MRP1 modulatory activity and
geometry, and has the ability to mine 3D-virtual databases
of drug-like molecules. Furthermore, the contours generat-
ed from QSAR studies highlight the structural features
required for MRP1-mediated MDR modulatory activity,
and is useful for further design of more potent inhibitors.

Methods

Biological data

A set of 80 compounds (shown in Tables 1–7) belonging to
the family of pyrrolopyrimidines, indolopyrimidines and
their congeners and reported as selective MRP1 inhibitors
[1, 2] were used for pharmacophore generation. The

Table 1 Compounds used in this study and their IC50 values (μM)

Table 2 Compounds used in this study and their IC50 values (μM)

a T indicates compounds in the test set
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activity of all compounds used in the QSAR study was
reported to have been measured by drug accumulation
assay using the MRP1-expressing cell line COR.L23/R, and
is reported as IC50 for daunomycin accumulation, where
100% accumulation is that observed in the presence of a
known MRP1 modulator: verapamil at 100 μM [1, 2]. The
negative logarithm of the measured IC50 value (pIC50) was
used in the 3D-QSAR study. These 80 compounds were
divided into a training set (60 compounds) and a test set (20
compounds) using randomisation as well as chemical and
biological diversity.

Generation of common pharmacophore hypothesis

The common pharmacophore hypothesis (CPH) and align-
ment based on it was carried out using PHASE, version 2.0,
2006 (Schrödinger, LLC, New York, NY) installed on an
AMD Athelon workstation [20]. The structures were
imported from the project table in the “Develop Pharma-
cophore Hypothesis” panel and geometrically refined
(cleaned) using Ligprep. Conformations were generated
by the MCMM/LMOD method using a maximum of 2,000
steps with a distance-dependent dielectric solvent model

and an OPLS-2005 force field. All the conformers were
subsequently minimised using truncated Newton conjugate
gradient minimisation up to 500 iterations. For each
molecule, a set of conformers with a maximum energy
difference of 30 kcal/mol relative to the global energy
minimum conformer was retained. A redundancy check of
2 Å in the heavy atom positions was applied to remove
duplicate conformers. Pharmacophore features—hydrogen
bond acceptor (A), hydrogen bond donor (D), hydrophobic
group (H), negatively charged group (N), positively
charged group (P), aromatic ring (R)—were defined by a
set of chemical structure patterns as SMARTS queries and
assigned one of three possible geometries that define the
physical characteristics of the site:

1. Point—the site is located on a single atom in the
SMARTS query.

Table 3 Compounds used in this study and their IC50 values (μM)

Table 4 Compounds used in this study and their IC50 values (μM)
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2. Vector—the site is located on a single atom in the
SMARTS query, and assigned directionality according
to one or more vectors originating from the atom.

3. Group—the site is located at the centre of a group of
atoms in the SMARTS query. For aromatic rings, the
site is assigned directionality, defined by a vector that is
normal to the plane of the ring.

Active and inactive thresholds of pIC50 of 7.00 and 5.50,
respectively, were applied to the dataset (Tables 1–7) to yield
12 actives and 7 inactives that were used for pharmacophore
generation and subsequent scoring. Common pharmaco-
phoric features were then identified from a set of variants—a
set of feature types that define a possible pharmacophore—
using a tree-based partitioning algorithm with maximum tree
depth of four with the requirement that all 12 actives must
match. The final size of the pharmacophore box was 1 Å to
optimise the number of final CPHs. These CPHs were
examined using a scoring function to yield the best
alignment of the active ligands using an overall maximum
root mean square deviation (RMSD) value of 1.2 Å with
default options for distance tolerance. The quality of
alignment was measured by a survival score, defined as:

S ¼ WsiteSsite þWvecSvec þWvolSvol þWselSsel

þWm
rew ð1Þ

Where W are weights and S are scores; Ssite represents
alignment score, the RMSD in the site point position; Svec

represents vector score, and averages the cosine of the angles
formed by corresponding pairs of vector features in aligned
structures; Svol represents volume score based on overlap of
van der Waals models of non hydrogen atoms in each pair of
structures; and Ssel represents selectivity score, and accounts
for what fraction of molecules are likely to match the
hypothesis regardless of their activity towards the receptor.

Wsite, Wvec, Wvol, Wrew have default values of 1.0, while
Wsel has a default value of 0.0. In hypothesis generation,
default values have been used. Wrew

m represents reward
weights defined by m−1 where m is the number of actives
that match the hypothesis.

QSAR model building

A training set of 60 molecules was selected randomly,
incorporating biological and chemical diversity, and was
used to generate atom-based QSAR models for all
hypotheses using a grid spacing of 1.0 Å. Models
containing four or more partial least squares (PLS) factors
tended to fit the pIC50 values beyond their experimental
uncertainty, therefore only one, two and three factor models
were considered. Each of these models was validated using

Table 5 Compounds used in this study and their IC50 values (μM)

Table 6 Compounds used in this study and their IC50 values (μM)
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an external test set of 20 molecules that were not
considered during model generation.

Validation of the generated pharmacophore

The generated pharmacophore model was used to carry out
a search of the ASINEX (http://zinc.docking.org/vendor0/
asin/index.html asin_p0.0.sdf) database version 2006.3, # in
catalog: 372187 made up of 45,533 molecules seeded with
four highly active molecules belonging to different chemo-
types and three inactives for MRP1-mediated MDR
modulatory activity. The minimum criteria for retrieval of
hits was that four out of five pharmacophoric features must
match, with default tolerance on matching the pharmaco-
phore feature to each of the five inter-feature distances. The
molecules were minimised using Ligprep and a maximum
of 100 conformers were generated for these molecules
using the ligand torsional search method.

Results and discussion

Pharmacophore models containing three, four and five sites
were generated using a terminal box size of 1 Å with 12 highly
active molecules, belonging to pyrrolopyrimidines, indolopyr-
imidine and their congeners, selected using a tree based
partition algorithm from the publications of Wang et al. [1,
2]. The three- and four-featured CPHs were rejected, as they
were unable to define the complete binding space of the
selected molecules. A total of 38,482 probable five-featured

CPHs belonging to 10 types (AAHHH, AHHRR, AAHPR,
AHHHR, AHPRR, AHHPR, AHHHP, AAHRR, AAHHP
and AAHHR) were subjected to stringent scoring function
analysis with respect to actives using default parameters for
site, vector, and volume. Reference relative conformational
energy (kJ/mol) was included in the score with a weight of
0.01, and ligand activity, expressed as pIC50, was incorporated
with a weight of 1.0. Hypotheses emerging from this process
were subsequently scored with respect to the seven inactives,
using a weight of 1.0. The hypotheses that survived the
scoring process were used to build an atom-based QSAR
model. A summary of statistical data of the best CPHs, labeled
CPH1 to CPH6, with their survival scores is listed in Table 8.

Good and consistent external predictivity was observed
for CPH1 for each combination as compared to the others.
CPH1 showed a good r2 value for the training set (0.799)
and excellent predictive power with Q2 of 0.679. A good
Pearson-R value of 0.883 was also observed. Actual and
predicted values of the training set and test set molecules
are given in the Electronic Supplementary Material. Other
pharmacophore models with good statistics (Table 8) were
not able to map diverse chemotypes having MRP1-
mediated MDR modulatory activity. Hence, the hypothesis
CPH1 with two hydrogen bond acceptors (A), one
lipophilic/hydrophobic group (H), one positive ionic feature
(P) and one aromatic ring (R) as pharmacophoric features was
retained for further studies. Figure 1 shows the alignment of
the molecules under study along with CPH1. The distances
and angles between the pharmacophoric features are depicted
in Fig. 2a and b, respectively. Figure 3 shows the graphs of
actual vs predicted activity for training and test set
molecules. The pharmacophore contains two acceptor
features mapping on the lone pair of vectors of two nitrogen
atoms in the pyrimidine ring, one aromatic ring feature
mapping on the pyrrole heterocycle, one positive ionic
feature mapping on one of the nitrogens in the piperazine
ring, and one lipophilic/ hydrophobic feature mapping on the
para-fluoro atom in the distal part of molecule.

Validation of the generated pharmacophore

The database search studies retrieved all the positive hits
and filtered out two inactives. Interpretation of how the
pharmacophore maps onto the positive hits can provide an
insight into the structural requirements for MRP1-mediated
MDR modulatory activity, and can act as a guide for further
modification of the molecules. However, the actual activ-
ities of these compounds were not compared with the
predicted activity since the activities of these compounds
were measured by different assay methods; moreover, these
compounds are significantly diverse from the compounds
that were used to build the QSAR model, and hence occupy
different chemical space, so the local QSAR model may not

Table 7 Compounds used in this study and their IC50 values (μM)
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give the correct interpretation. Four highly active molecules
—LY329146, LY402913, dehydrosilybin (DHS) and phe-
noxymethylquinoxalinone—that show MRP1-mediated
MDR activity, were taken from a review of Boumendjel
et al. [21, and references therein]. Figure 4 shows the
chemical structure of these diverse MRP1-mediated MDR
modulators used for validation of CPH1.

Eli Lilly has reported a raloxifene analogue, LY329146,
which was able to reverse doxorubicin resistance in the
MRP1-expressing HL60/ADR cell line. The two acceptors
mapped to the two sulfonamide groups and the aromatic
ring feature of the pharmacophore mapped to the benzene
ring. The positive ionic feature mapped to the tertiary
nitrogen of the piperidine ring system. However, LY329146
was unable to map onto the hydrophobic feature. Figure 5a

shows the mapping of LY329146 on CPH1. Thus, four out
of five features were mapped on LY329146. This mapping
indicates that substitution of a hydrophobic group on the
piperidine ring, which can extend to the hydrophobic
feature, may enhance the activity of the molecule. This
information could provide a clue for the further modifica-
tion of LY329146.

The isoxazole derivative LY402913 was reported by Eli
Lilly to be a selective and potent MRP1-mediated MDR
modulator. One acceptor feature of the pharmacophore
mapped to the oxygen atom in the isoxazole ring, and the
other acceptor to the carbonyl group. The aromatic ring
feature mapped to the ring attached to isoxazole, the
hydrophobic group mapped to the methyl group. However,
the molecule was unable to map the positive ionic feature.

Table 8 Summary of quantitative structure-activity relationship (QSAR) results for six best common pharmacophore hypotheses (CPHs) with
survival scores. SD Standard deviation of the regression, r2 value of r2 for the regression, F variance ratio, P significance level of variance ratio,
RMSE root-mean-square error, Q2 value of Q2 for the predicted activities, Pearson-R Correlation between the predicted and observed activity for
the test set

CPH1(AAHPR) CPH2 (AAHHH) CPH3(AAHHP) CPH4(AAHHR) CPH5(AAHRR) CPH6(AHHRR)

Survival score 10.837 10.311 10.819 11.025 10.777 10.875
SD 0.279 0.299 0.306 0.273 0.276 0.318
r2 0.799 0.768 0.758 0.807 0.803 0.739
F 74.2 61.9 58.3 78.1 76.1 52.9
P 1.688e–19 8.67e–18 3.106e–17 5.368e–20 9.509e–20 2.353e–16
RMSE 0.347 0.406 0.353 0.352 0.369 0.369
Q2 0.679 0.558 0.666 0.667 0.637 0.636
Pearson-R 0.833 0.777 0.827s 0.819 0.808 0.799

Fig. 1 Common pharmaco-
phore hypothesis 1 (CPH1)-
based alignment of multidrug
resistance-associated protein
(MRP1) inhibitors
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Figure 5b shows the mapping of LY402913 on CPH1. The
mapping studies indicate that one positive ionic feature in
the spacer part of the molecule might enhance MRP1
modulatory activity.

In the case of the flavonoid derivative DHS, the oxygen
of the hydroxy group and the carbonyl group mapped on
two acceptor features. The aromatic ring feature mapped
on the benzene ring and the hydrophobic feature mapped on
the methyl group. But DHS was unable to map to the
positive ionic feature. Figure 5c shows the mapping of DHS
on CPH1.

The oxygen of methoxy group and carbonyl group
mapped onto the two acceptor features of the pharmaco-
phore in phenoxymethylquinoxalinone. The aromatic ring
feature and hydrophobic feature mapped on the two
benzene rings. However, phenoxymethylquinoxalinone
was unable to map on the positive ionic feature, which
indicates room for chemical modification to improve
activity. Figure 5d shows the mapping of phenoxymethyl-
quinoxalinone on CPH1.

Thus, pharmacophore mapping studies carried out for
further validation can be utilised for the chemical modifi-
cation of different chemotypes with MRP1-mediated MDR

modulatory to improve their activity. Furthermore, these
studies provide confidence in the applicability of the model
for diverse chemotypes and its usefulness for 3D-database
searching studies.

Interpretation of QSAR models

Additional insights into the inhibitory activity can be
gained by visualising the QSAR model in the context of
one or more ligands in the series with varying activity. This
information can then be used to design new, more active
analogues. A pictorial representation of the contours
generated is shown in Fig. 6a–f. In these representations,
the blue cubes indicate favourable regions while red cubes
indicate unfavourable regions for activity.

Figure 6a and b compare the QSAR model in the context
of the hydrogen bond donor property for the more active
molecule 32 and the less active molecule 38. The blue
regions were observed near the 7th position of pyrrolopyr-
imidine compounds, thus molecules (30, 31, 32, 33 and 34)
with a potential hydrogen bond donor at this position
showed high activity (Fig. 6a). Red regions were observed
near the N–H in the indolopyrimiding ring and hydrogen

Fig. 2a,b Geometry of the
pharmacophore. Red spheres
with vectors Acceptor feature,
orange torus aromatic ring fea-
ture, blue sphere positive ionic
feature, green sphere hydropho-
bic feature. a CPH1 features and
distances. b CPH1 features and
angles
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Fig. 3 Scatter plots for the predicted and experimental pIC50 values for the MRP1 QSAR model applied to the training set (a) and the test set (b);
r2=0.799, Q2=0.679 and Pearson-R=0.883

Fig. 4 The chemical structure
of the four chemotypes showing
MRP1-mediated MDR modula-
tors used for validation of CPH1

918 J Mol Model (2008) 14:911–921



bond donor substitution at the 6th position of ring C as in
molecule 38 and 40, contributing to the lower activity of
these molecules (Fig. 6b).

Figure 6c illustrates the significant favourable and unfav-
ourable hydrophobic interactions that arise when the QSAR
model is applied to the reference ligand 71—the most active
compound in the training set (pIC50=7.48). Blue regions were
observed near the fluorine atom, which appears to be one of
the pharmacophoric features. Further, more pronounced blue
regions were visible near the two carbon linker and the
phenyl ring that is present in all the most active ligands, thus
making these features important for activity despite the fact
that these features are missing from the pharmacophore. Blue
regions near the ring C of the indolopyrimidine system and
substitution at the 5th position (Tables 4, 5, 6, 7) indicate their
importance for activity although these features are missing
from the developed pharmacophore model.

A striking observation was that there are only a few
unfavourable red regions in the case of the reference ligand,
which is the most active molecule in the series. However, in
the context of one or more inactive ligands, the QSAR

model can provide information about structural features that
may be detrimental to activity [19]. For example, Fig. 6d
shows a clear predominance of unfavourable interactions
for the most inactive training set molecule, 2. In particular,
the ring C protrudes significantly out from the indolopyr-
imidine ring system of the reference ligand, with a
concomitant increase in the unfavourable volume compared
to the reference ligand, justifying the possibility of reduced
activity due to steric factors. Moreover, the phenyl ring
attached to pyrrolopyrimidines system protrudes signifi-
cantly away from the reference ligand, contributing to loss
of activity. Thus, Fig. 6c and d compare the most
significant favourable and unfavourable steric interactions
that arise when the QSAR model is applied to the most (71)
and least (2) active molecules.

Figure 6e and f compare the most significant favourable
and unfavourable hydrogen bond acceptor and electron
withdrawing features that arise when the QSAR model is
applied to the most active molecule, 71 and 49 having
intermediate activity. Blue regions were observed near the
tertiary nitrogens, indicating their importance for activity.

Fig. 5 Mapping of compounds LY329146 (a), LY402913 (b), dehydrosilybin (DHS) (c) and phenoxymethylquinoxalinone (d) on CPH1 on the
pharmacophore (colour codes as in Fig. 2)
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Fig. 6 Pictorial representation of the contours generated using the
QSAR model. Blue cubes indicate favourable regions while red cubes
indicate unfavourable region for the activity. a QSAR model
visualised in the context of hydrogen bond donor property with
molecule 32. b QSAR model visualised in the context of hydrogen
bond donor property with molecule 38. c The significant favourable
and unfavourable hydrophobic interactions that arise when the QSAR

model is applied to reference ligand 71. d The significant favourable
and unfavourable hydrophobic interactions that arise when the QSAR
model is applied to the least active ligand, 2. e QSAR model
visualised in the context of hydrogen bond acceptor property and
electron withdrawing features with reference ligand 71. f QSAR
model visualised in the context of hydrogen bond acceptor property
and electron withdrawing features with ligand 49
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Of these, two nitrogens in the pyrimidine ring and one
nitrogen of the piperazine ring are also mapped as
pharmacophoric features. In the case of ligands 48 and
49, red regions were associated with electron withdrawing
groups at the 7th and 8th (Table 4) position, thereby leading
to a decrease in activity (Fig. 6f).

Conclusions

Different pharmacophore hypotheses were developed using
PHASE, and the alignment based on these pharmacophores
was used as the input for the development of 3D-QSARs. A
five-point pharmacophore with two hydrogen bond accept-
ors (A), one lipophilic/hydrophobic group (H), one positive
ionic feature (P) and one aromatic ring (R) as pharmaco-
phoric features was associated with the most significant
QSAR model. Pharmacophore mapping studies provided an
insight into the inhibitory potential of different chemotypes
as MRP1-mediated MDR modulatory activity. Furthermore,
visualisation of the 3D-QSAR model in the context of the
molecules under study provided details of the relationship
between structure and activity, and thus provides informa-
tion regarding structural modifications with which to design
analogues with better activity prior to synthesis.

In summary, in the absence of a crystal structure of the
MRP1 receptor and knowledge of bioactive conformations
of molecules, the ligand-based model presented in this study
based on pharmacophoric conformations could be very
useful for the design of better analogues. Moreover, the
pharmacophore developed can be used as a 3D-query for
virtual databases in the search for new MRP1 modulators.
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